Course Type	Course Code	Name of Course	L	Т	Р	Credit
DP	NCEC504	Computational Laboratory-I	0	0	3	1.5

Course Objective

The course aims at imparting knowledge on computational aspect of Civil Engineering

Learning Outcomes

Upon successful completion of this course, the students should be able to:

• Learn the theories in mechanics of geomaterials, mechanics of deformable solids, engineering hydrology and hydraulics and transport system design & management

Unit No.	Topics to be Covered	Contact Hours	Learning Outcome		
1	Problem-1: Problem on consolidation in layered soil profile	3	Solution by finite difference scheme		
2	Problem-2: Problem on seepage in layered soil profile	3	Solution by finite difference scheme		
3	Problem-3: Prediction of drained responses of soil through critical state mechanics	3	Application of critical state mechanics		
4	Problem-4: Prediction of undrained responses of soil through critical state mechanics	3	Application of critical state mechanics		
5	Problem-5: Development of unit hydrograph and flood hydrograph from storm data of catchment	3	Application of hydrograph theory		
6	Problem-6: Design of hydraulically efficient irrigation channel	3	Application of Lacey's and Kennedy's theory		
7	Problem-7: Computation of infiltration using Horton's, Philip's and Green-Ampt Method	3	Application of infiltration theories		
8	Problem-8: Trip generation prediction modeling using statistical/econometric software packages	3	Application trip generation concept		
9	Problem-9: Trip distribution modeling using statistical/econometric software package	3	Application trip distribution concept		

Unit No.	Topics to be Covered	Contact Hours	Learning Outcome		
10	Problem-10: Solution of one-dimensional structural element by using Galerkin's weighted residual method.	3	Weighted residual method through programming		
11	Problem-11: Solution of two-dimensional structural element by using Galerkin's weighted residual method.	3	Weighted residual method for 2D problems through programming		
12	Problem-12: Solution of springs-bar discrete system by using direct stiffness method	3	Direct stiffness method for discrete system through programming		
13	Problem-13: Solution of continuous beam by using direct stiffness method.	3	Direct stiffness method for continuous beam through programming		
14	Review and Practice	3			
Total Contact Hours		42			

Text Books:

- 1. Budhu, M. (2010). Soil Mechanics and Foundations, 3^{er}Edition, Wiley.
- 2. Srinath, L.S. (2009). Advanced Mechanics of Solids. Tata McGraw-Hill
- 3. Garg, S.K. (2015), "Hydrology and Water Resources Engineering", 20th edition, Khanna Publishers.
- 4. Sarkar, P.K., Maitri, V., and Joshi, G.J. (2016). Transportation Planning, Principles, Practices and Policies, PHI Pvt. Ltd.